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A DATASETS
Multi-viewCaptures. Wefit linear blend shapes for our deformable

hair geometry from 283 hairstyles captured in a studio environment.
The studio capture setup is similar to the capture system presented
by Cao et al. [2022] and Saito et al. [2024], where we obtain calibrated
and synchronized multi-view images at a resolution of 4096 × 2668
through the use of 110 cameras. For each RGB image, it’s prepro-
cessed to produce the corresponding segmentation maps, which are
used as supervision for our hair geometry fitting algorithm.

Single-view Images. We use the official checkpoint of PanoHead
[An et al. 2023] as the portrait image generator to generate train-
ing images for our generative model. To generate images from
PanoHead, we sample the input latent code z ∼ N(0, 1), and camera
pose Π with the yaw angle sampled from U(0, 2𝜋), and pitch angle
sampled fromU(𝜋/2−0.5, 𝜋/2+0.5). They are passed to PanoHead
to generate and render RGB images at a resolution of 512 × 512,
from which we use [Lin et al. 2021] to obtain the foreground mask
at resolution 512 × 512, and finally apply [Zheng et al. 2022] to
parse the image into a hair-face segmentation map at resolution
512 × 512. For each iteration, we perform these operations on the
fly to obtain the training images, resulting in 25𝑚 images in total
used for training.

B TRAINING DETAILS
Our network architecture follows the official implementation of
StyleGAN2 [Karras et al. 2020], where each mapping network con-
sists of 2 hidden layers. For the geometry mapping network, it
consists of a single hidden layer of 512 hidden units and uses the
softplus activation function. We modify the output convolution lay-
ers such that they produce a feature map of shape 256 × 256 × 32.
Subsequently, a series of lightweight MLP decoders are applied to
map the output features at each texel to different Gaussian parame-
ters, including position, rotation, scale, color, and opacity. The MLP
decoder shares the same architecture as the geometry mapping
network, but reduces the number of hidden units to 64.
Our model is trained from scratch using the Adam optimizer

[Kingma and Ba 2014]. We use a learning rate of 0.0025 for the
generator and 0.002 for the discriminator, leading to a stable training
configuration in our case. Our model is trained for 25𝑀 images
following Chan et al. [2022] with an effective batch size of 64, which
takes around 4 days to train on 32 NVIDIA A100 GPUs with 80G of
VRAM each. To fit hair geometries w.r.t. multi-view segmentation
maps, we utilize the Adam optimizer as well, with a learning rate
of 0.01 for the Jacobians and 0.2 for the centroid translation. On a
single NVIDIA A100 GPU, the optimization process of 500 iterations
for a single mesh finishes within 1 minute.

C QUALITATIVE ABLATION
In Fig. 1, we present qualitative comparisons of RGB images and
hair-face segmentation maps rendered from models trained with

different segmentation supervision configurations. Seg. in D refers
to concatenating the rendered segmentation maps with the discrim-
inator input, allowing the discriminator to adversarially evaluate
whether the segmentation is realistic. However, our experiment
reveals that this configuration is unstable during training and prone
to model collapse in the early stages of GAN training, yielding mean-
ingless outputs as shown in the left column. By contrast, simply
removing the segmentation input and training the model without
segmentation loss (w/o Seg. loss) surprisingly produces renderings
with acceptable quality and reasonable hair-face segmentation, as
illustrated in the middle column. We hypothesize that it is because
our template mesh already provides a good initialization for hair
and face Gaussians. The adversarial training then guides the model
to refine these Gaussians with as minimal displacement as possible,
leading to a certain level of separation even in the absence of explicit
segmentation loss. Finally, incorporating our segmentation loss (w/
Seg. loss) produces results with a significantly clearer separation be-
tween hair and face Gaussians, as demonstrated in the right column.

Seg. in D w/o Seg. loss w/ Seg. loss

Fig. 1. Samples rendered from models trained with different segmentation
supervision configurations.

In Fig. 2, we present qualitative comparisons of samples rendered
from models trained with different hair geometry configurations.
When the hair geometry is fixed, hair Gaussians tend to require
larger deviations to represent varying hairstyles, leading to floating
Gaussians being placed in random positions, which is particularly
noticeable in the rendered segmentation maps shown in the middle
column.When the hair geometry is deformable, shape variations are
streamlined to the mesh itself, effectively constraining the spatial
distribution of hair Gaussians to a tighter layer around the mesh
surface. Consequently, the rendered segmentation maps exhibit
fewer floating artifacts, and the hair details in the rendered RGB
images are improved, as demonstrated in the left column.
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Fig. 2. Samples rendered from models trained with different hair geometry
configurations.

In Fig. 3, we present qualitative comparisons of different hair-face
correlation modules. When employing the concatenation mecha-
nism, the composition results exhibit a strong dependency on face
information, leading to minimal changes in the hairstyle when the
face is fixed. In contrast, the cross-attention mechanism achieves
a better balance between hair and face information, enabling the
composition to more accurately preserve the reference hairstyle
while maintaining the plausibility of the generated result.
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Fig. 3. Hair-face compositions from models trained with different hair-face
correlation modules.

D ADDITIONAL RESULTS
In Figs. 4 to 7 we show uncurated samples generated from our
method, including the rendered RGB images, hair-face segmentation
maps, mesh normal maps, and 3D Gaussian visualization.
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Fig. 4. Uncurated samples (RGB).

Fig. 5. Uncurated samples (Hair-face segmentation maps).
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Fig. 6. Uncurated samples (Mesh normal maps).

Fig. 7. Uncurated smaples (3D Gaussian visualization).
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